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1 Introduction

In our increasingly interactive world, elections and
other forms of collaborative group decision-making
are becoming ever more important. Many vot-
ing systems have been proposed, from common
plurality-based methods to the historical approaches
of Condorcet and Borda and, more recently, Single
Transferable Vote, Range Voting, and Alternative or
Instant Runoff Voting ([10], [12], [14], [19]). There
is increasing awareness of how the mathematical
properties of voting systems affect not just the elec-
tion outcome but also which options are really con-
sidered and the content of pre-election debate. An
understanding of the tradeoffs of various approaches
appears critical for democratically governed groups
of all sizes to realize their full potential.
Democratic decisions made when choosing be-

tween only two candidates or options seem straight-
forward: the option with the most votes for should
win. Unfortunately, in voting situations that have
more than two alternatives, democratic decisions
rapidly become more problematic. This paper
presents a new vote-tallying method, moderated dif-
ferential pairwise tallying, that can improve the
quality of single-winner elections. This method is
a per-voter hybrid of Condorcet’s pairwise compar-
ison with a cardinal-weighted revision of the Borda
count which gives all voters control over exactly
how their preferences are tallied. We also show
that the method maintains the virtues which make
pairwise comparisons so appealing while reducing
the potential for ambiguous cyclical outcomes. Our
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hope is that the adoption of this and future advances
in social choice theory will help build more respon-
sive democracies and encourage greater civic partic-
ipation.

2 The Spoiler Effect and Other
Challenges

Before describing the developments in this paper,
we would like to provide some motivation and in-
troduce some key ideas. Those readers familiar with
the spoiler effect and Condorcet’s method of pair-
wise comparison may choose to go on to the next
section.
Consider the following common scenario: two

candidates, P and Q, each receive the support of
about half of the voters. Selecting between just
P and Q is simple: whichever candidate receives
more support in a head-to-head comparison can be
deemed preferred by the group as a whole. Now
consider the effect of adding a third option, M, to
the set of candidates. In commonly used plurality
voting systems, each voter is given one vote to cast
for either P, Q, or M. With the addition of alternative
M each voter must decide whether or not he would
like to change his vote from P or Q to M. If a voter
still prefers P or Q to M, then logically he should
continue to support his prior top candidate. But the
voting system has introduced a risk for those voters
who might change their vote from P or Q to M, since
removing support from either P or Qmight cause the
other less desired candidate to win.
The voters who are considering a switch to M are

in a quandary. Each voter is forced to weigh the po-
tential benefit of switching his vote to M against the
risk of causing his least preferred of the three can-
didates to win. It is even possible that every voter
would actually prefer M to either P or Q but, be-
cause of the perceived risk associated with voting
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for a third alternative, the group will remain polar-
ized and stuck choosing between P and Q.
This M, P, and Q scenario is an example of the

third-party spoiler effect, where the addition or re-
moval of a non-winning candidate can affect which
candidate wins. Almost all voting methods in use
today are plagued by variations of the spoiler effect,
but it is particularly problematic in plurality-based
methods where each voter votes for a single candi-
date. The prevalence of the spoiler effect in a voting
method can directly influence how an election un-
folds in several ways.
First, in the face of the spoiler effect, voters are

often forced to speculate about which candidates are
the top contenders to determine how to avoid a detri-
mental result. The spoiler effect effectively penal-
izes voters who do not use a voting strategy which
looks to vote only for one of the front-running can-
didates. This unfortunate reality can cause the out-
come of an election to depend more on perceptions
of popular opinion than the electorate’s true prefer-
ences.
In addition, once a voter has decided to support

one of the perceived front-runners, there is little in-
centive for him to consider other alternatives. The
perceived risk of supporting a third-party candidate
limits which options are fully explored. By focusing
attention on the perceived front-runners, the spoiler
effect contributes to the polarizing divisiveness sur-
rounding some elections and can influence not only
which candidate is elected but the very nature of the
preceding democratic debate itself.
These distinctly less-than-democratic outcomes

are just a few examples of the potential conse-
quences of using a voting system which is subject to
the spoiler effect. The frequent worry about “throw-
ing one’s vote away” around election time illustrates
the awareness of many voters about the spoiler ef-
fect, even if they do not use the term. These issues
are so common that they are often accepted as being
an inherent part of the election process. However,
the potential for electoral results to be influenced by
the spoiler effect highlights the very real value of a
well-formed, truly democratic voting system. The
question then becomes: how can a democratic se-
lection be made between several candidates without
inviting the spoiler effect?
As we have mentioned, the spoiler effect is partic-

ularly troublesome in plurality methods where each
voter has a single vote to cast. In an attempt to
reduce the severity of the spoiler effect, many po-
litical systems using plurality methods hold a se-
ries of smaller contests including primaries, runoffs,
or both. Although holding a final runoff between

the top two candidates does return to the simple
two candidate scenario for the last stage of an elec-
tion, the voting which determines who will be in
the runoff is still subject to the spoiler effect. Re-
cently, Single Transferable Vote (STV) and Alter-
native Vote or Instant Runoff Voting (IRV) have re-
ceived a lot of attention for bypassing the logistical
need for a separate runoff. However, the implemen-
tations of these methods still involve a series of plu-
rality votes and so the spoiler effect still influences
election results.
To show how a voting system can be designed

to avoid the spoiler effect, we will return to the P,
Q, and M scenario. When P and Q were the only
two choices, selecting a winner was easy and there
was no threat of the spoiler effect. The simplic-
ity of the two candidate scenario holds a clue about
how the spoiler effect can be eliminated from demo-
cratic decision-making. When candidate M is in-
cluded in the pool of options and voters are asked
to pick one of three candidates, then the spoiler ef-
fect appears. Consider instead if we asked voters
to pick one candidate out of each possible pair of
candidates: {P,Q}, {P,M}, or {Q,M}. With this ap-
proach, a voter can still support P over Q, but also
express his preference for M over either P or Q, for
example. By evaluating the candidates in pairs in
this way, the risk of the spoiler effect caused by sup-
port for newcomer M is removed. This approach to
tallying votes is known as exhaustive pairwise com-
parison.
To give voters the freedom to express their prefer-

ences over many pairs of candidates, a different kind
of ballot is required, something known as a ranked
choice ballot. Ranked choice ballots, which are also
used in STV, IRV, and other methods, allow voters
to rank the candidates against each other. Ranked
choice ballots allow the concept of pairwise contests
to be easily extended to all possible combinations of
candidates. For example, if a voter ranked M higher
than P on a ranked ballot, then it would be the same
as the voter supporting M in the pairwise compari-
son {P,M}.
The combination of ranked choice ballots and ex-

haustive pairwise comparison forms the foundation
of the voting method first proposed by Condorcet in
1785 [5]. Condorcet’s approach effectively holds a
simultaneous runoff between every possible pair of
candidates. To resolve the P, Q, and M scenario with
Condorcet's method, each voter would submit a bal-
lot ranking the three choices. If candidate M won
her pairwise comparison against both P and Q, then
M would be the Condorcet winner and would be se-
lected as the group’s most preferred choice.
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Pairwise comparisons have the important advan-
tage of strict candidate pair dependence: a voter’s
ranking for candidate M has no effect on the rela-
tive standing of P and Q. When exhaustive pairwise
comparison produces a Condorcet winner, then the
result is independent from irrelevant alternatives,
meaning that any non-winning candidate can be re-
moved without affecting the outcome. Thus, we
have found a method for making a truly democratic
decision between multiple candidates without risk-
ing the emergence of the spoiler effect.
It is worth noting that plurality-based runoff

methods, including STV and IRV, will often elimi-
nate a potential Condorcet winner. The spoiler effect
in the early rounds of these plurality-based meth-
ods will often lead to a runoff between two less-
preferred candidates. A Condorcet winner will al-
ways win a runoff election against any of the other
candidates and is therefore distinctly the choice of
the voters overall.
While exhaustive pairwise comparison has many

important virtues when there is a Condorcet win-
ner, unfortunately such a decisive winner does not
always occur. When no single candidate wins all of
her pairwise sub-contests, a set of more-preferable
candidates will often emerge above the rest of the
choices. This top cycle set wins over all candidates
outside the set, but there is no coherent ordering of
the candidates within the set [16]. The figure below
gives one example of a cycle set, where P wins over
M, M wins over Q, but Q wins over P to create a
cycle. There exists a class of voting methods known
as Condorcet methods which differ only in how they
select a winner in the case of a top cycle set. There
is little data, however, on how frequently top cy-
cles would occur in real elections, particularly when
there are a large number of candidates. Nonetheless,
the potential for these ambiguous results with Con-
dorcet’s approach means that some further analysis
is needed.

In this paper, we pursue an understanding as to
why cycles can occur in pairwise tally results and
develop a method to reduce their likelihood.

3 Contents of this Paper

The core contribution of this paper is a new pair-
wise tallying formulation which unifies Condorcet’s

method with a linear version of the Borda count. As
we will show, classic pairwise comparison discards
critical relative priority information from voters
which can resolve cycles. Our new hybrid method,
moderated differential pairwise tallying (MDPT), is
built on the premise that not all voters will choose
to strategically maximize their ballot’s influence to
the Condorcet-style extreme. A new voting parame-
ter called the moderation span will be introduced,
which allows voters to express slight preferences
between candidates they find similarly preferable.
We show that when voters use the new moderation
parameter, this new tally formulation decreases the
chances that a cycle will occur without introducing
any dependence on irrelevant alternatives. This con-
cept of individual moderation also suggests intrigu-
ing new approaches for resolving top cycles.

This paper is organized as follows. In Section
4 we explore the mathematics of Condorcet’s pair-
wise analysis. The issue of ambiguous cyclical re-
sults and their inevitability in the face of Arrow’s
impossibility theorem is the topic of Sections 5 and
6. We present a fully linear Cardinal utility sys-
tem in Section 7, but the necessary introduction of
a constraint on voter weight in Section 8 leads to a
real-valued formulation similar to Borda’s method.
In Sections 9, 10, and 11 we transform the Con-
dorcet and real-valued Borda tallying methods into a
common difference matrix framework. From these
transformations we derive our new voter-specified
hybrid method, MDPT, in Section 12. We show in
Sections 13 and 14 how this new tallying formu-
lation reduces the potential for cyclical results. In
Section 15 we discuss some properties and interpre-
tations of moderated tallying. Section 16 focuses
on the practical aspects of implementing MDPT, in-
cluding a suggestion of how voters might cast pref-
erence ballots and set the new voting parameter. We
conclude in Section 17 and offer some intriguing fu-
ture directions for this work in Section 18.

For those already versed in social choice theory,
we hope that the perspectives on Condorcet, Borda,
and strategic voting we present will spark further
insights. For those new to some of these concepts
or interested in how our proposal might be used,
you may want to read the more practical material
in Section 16 before diving into the other sections.
We have tried to ensure that your effort to grasp
these ideas is rewarded with some new and inter-
esting understanding. We would also like to open
up these ideas for discussion and look forward to di-
alog with others interested in improving commonly
used democratic group decision methods.
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4 Condorcet pairwise tallying

As we described in Section 2, pairwise tallying
holds a sub-contest for every pairwise combination
of candidates. By considering just the candidate pair
in question for each sub-contest, this formulation re-
mains free of the third-party spoiler effect. Based on
recently rediscovered manuscript transcriptions, the
concept of making group decisions using exhaus-
tive pairwise comparison has a long history. In the
13th century Llull described an iterative procedure
for small groups to elect a leader by holding a head-
to-head vote for every possible pairwise combina-
tion of candidates [8]∗. Condorcet proposed the first
known pairwise tallying method based on ranked
choice ballots in 1785 [5], [11].
We will first present the equations for pairwise

tallying and then show an example of the computa-
tion. The first step in determining the winner of can-
didate pair {A,B} with pairwise tallying is to tally
how many voters ranked A higher than B,

Tcond [A,B] =
all voters

∑

v

(

!bv[A] > !bv[B]
)

(1.1)

For this paper, !bv will always be a voter’s real-
valued preference ballot vector and the term!bv[A] is
the preference rating given to candidate A by voter
v. The relative standing of!bv[A] and!bv[B] indicates
the voter’s relative preference for A or B with the
expression (!bv[A] > !bv[B]) yielding 1 when !bv[A]

is greater than !bv[B] and zero otherwise. Iterating
(1.1) over all pairs of candidates computes a square
pairwise tally matrix, Tcond , using Condorcet’s ap-
proach. Tcond [A,B] contains the number of voters
who ranked candidate A higher than B. While not
necessary for (1.1), in this paper all preference rat-
ings will be real values. The use of real values will
prove significant in later sections.

4.1 Example: Condorcet Tally of One
Ballot

For this example we will compute how the single
real-valued preference ballot below is added to an
aggregate tally.

Voter 1
1.0 A
0.9 C
0.0 B

∗ As Llull was well-read in the writings of Arabic scholars,
there is some speculation that Llull’s ideas may have their roots
in prior Arabic thinking, see [12]

This voter has ranked A > C > B. For all the ex-
amples in this paper ballots will span the interval
[0,1] for simplicity, but any interval is acceptable.
When this ballot is tallied using (1.1), the voter’s
support is added to Tcond [A,B], Tcond [A,C], and
Tcond [C,B], as shown in matrix form below.

Voter 1
A B C

A 0 1 1
B 0 0 0
C 0 1 0

Notice that while the ordering of candidates on
the voter’s ballot can be determined from this ma-
trix, the original spacing between the candidates
cannot.

4.2 Picking a Winner from a Condorcet
Tally

To determine a choice from a pairwise tally, we
first compute a delta-tally matrix where each ele-
ment compares how candidate A fared relative to
candidate B. Subtracting the transposed tally matrix
TT
cond from Tcond yields the difference between row
A, column B and row B, column A,

Dcond = Tcond − TT

cond (1.2)

In other words, (1.2) tallies the number of vot-
ers who ranked candidate A higher than candidate
B versus B higher than A across all pairs of can-
didates in matrix form. The resulting delta-tally
matrix, Dcond , is anti-symmetric and has zeros on
the diagonal (where candidates tie with themselves).
FromDcond we can easily compute a pairwise win-
Boolean matrixWcond ,

Wcond = (Dcond > 0) (1.3)

As before, the (x > y) operator yields 1 (true)
when x is greater than y, 0 (false) otherwise. When
this operator is applied to a matrix of values it oper-
ates on an element-by-element basis. Wcond [A,B]
will be 1 if Dcond [A,B] > 0 (ie, when A beats B)
and 0 otherwise. Overall contest results are then de-
termined by examining the full contents of this pair-
wise win matrix.
Together (1.1), (1.2), and (1.3) perform Con-

dorcet’s pairwise analysis. If all the win-Booleans
in a candidate’s row in Wcond are 1 (except the 0
diagonal where candidates tie with themselves), this
candidate has won a direct comparison with every
other candidate in the election and is distinctly the
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best choice. As mentioned in Section 2, a candidate
who wins all of her pairwise comparisons is termed
a Condorcet winner. Since the delta-tally matrix is
anti-symmetric, a Condorcet winner will also have
her corresponding column in Wcond all 0 since she
will not have lost to anyone.

4.3 Example: Condorcet Winner

For this example we will examine a three voter, three
candidate election which produces a Condorcet win-
ner.

Voter 1 Voter 2 Voter 3
1.0 A 1.0 B 1.0 C
0.9 C 0.2 C 0.8 A
0.0 B 0.0 A 0.0 B

As in Example in section 4.1, we can compute
what each voter will contribute to the tally matrix.

Voter 1
A B C

A 0 1 1
B 0 0 0
C 0 1 0

Voter 2
A B C

A 0 0 0
B 1 0 1
C 1 0 0

Voter 3
A B C

A 0 1 0
B 0 0 0
C 1 1 0

Summing all of these contributions produces the
following pairwise tally matrix.

Tcond

A B C
A 0 2 1
B 1 0 1
C 2 2 0

To compute the corresponding delta-tally
matrix, we subtract TT

cond from Tcond , so
Dcond [A,B] = (Tcond [A,B] − Tcond [B,A]).
From the delta-tally we then compute the pairwise
win-Boolean matrix.

Dcond

A B C
A 0 1 -1
B -1 0 -1
C 1 1 0

Wcond

A B C
A 0 1 0
B 0 0 0
C 1 1 0

The winner of this election is candidate C who
wins over both A and B. This can also be seen di-
rectly from Dcond since C’s row is all positive ex-
cept the 0 diagonal.

4.4 Properties of Condorcet Tallying

Since each matrix element Tcond [A,B] depends
only on relative ballot positioning of the associated
pair of candidates, each element of Tcond possesses
strict candidate-pair dependence. This desirable
property is a direct result of Condorcet’s method
of tallying votes. Since each voter’s full support is
given to his preferred candidate in every pairwise
sub-contest, all pairwise results are independent of
the presence of any candidate not in the pair. There-
fore, when there is a Condorcet winner, pairwise
tallying exhibits the very desirable property of in-
dependence from irrelevant alternatives: any non-
winning candidate can be added or removed from
the contest without changing the result. As a con-
sequence of this independence, pairwise tallying is
free of the spoiler effect. The catch, however, is that
a Condorcet winner does not exist for all possible
collections of ballots.

5 Coinciding Cyclical Majorities

As Condorcet discovered in 1785, even though each
voter submits a strictly ordered list of candidates,
the set of pairwise contest results can form an am-
biguous cycle [3, pg 193]. One collection of ballots
which produces a cyclic outcome is shown in Exam-
ple below.

5.1 Example: Coinciding Cyclical
Majorities

In this example we will modify one of the ballots
from Example in 4.2 such that the pairwise tally re-
sults in a cycle. We will switch Voter 1’s rating of
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candidates B and C so that the previous winner, C,
is now at the bottom of his ballot.

Voter 1 Voter 2 Voter 3
1.0 A 1.0 B 1.0 C
0.9 B 0.2 C 0.8 A
0.0 C 0.0 A 0.0 B

Notice that each voter is using a different rotation
of the same preference order. Tallying these ballots
produces the following win-Boolean matrix.

Wcond

A B C
A 0 1 0
B 0 0 1
C 1 0 0

Each candidate wins one of their pairwise com-
parisons and loses the other one, forming a cycle:
A wins over B, B wins over C, but C also wins
over A. A cycle can also be shown graphically us-
ing a win edge-graph as above, where directed edges
point from the loser to the winner of each pairwise
sub-contest.

5.2 Cause of Cycles
There are several names for the cycle phenomenon,
including “majority rule cycle” and “cyclical major-
ity.” In his writings on the topic, Condorcet often
used the word “contradictoire” when referring to cy-
cles [5]. The potential for cyclical results is also of-
ten referred to as Condorcet’s “paradox”: although
each voter submits a ranked ballot, it is possible for
the group tally to have no coherent ranking. We
prefer the term coinciding cyclical majorities which
emphasizes that the pairwise majority-rule victories
which produce the cyclical result all occur from the
same collection of ballots. Regardless of the name,
the potential for ambiguity in the ranking produced
by pairwise tallying can seem paradoxical, contra-
dictory, or at least disconcerting. Under some situa-
tions a result with no decisive winner may be accept-
able, but in general we require a method which can
resolve any possible set of input ballots. This paper
shows why coinciding cyclical majorities are actu-
ally an expected result of the mathematics of pair-
wise tallying and what can be done to reduce their
likelihood.
Contrary to potential misconception, the poten-

tial for coinciding cyclical majorities is not so much
due to underlying irrational preferences of the vot-
ers as it is a product of how votes are tallied. As

noted earlier, Condorcet’s method of maximizing a
voter’s influence over each pairwise sub-contest in-
dependently means that pairwise tallying is immune
to the spoiler effect. However, since each pairwise
sub-contest is tallied based only on the relative rank
order of the two candidates involved, information
regarding relative preference magnitudes is entirely
lost. The sign of the preference difference between
the candidates is conserved, but the strictly pairwise
perspective in Condorcet’s evaluation cannot distin-
guish between a voter’s significant, modest, or triv-
ial preference differentials.
As noted by Saari [14], the emergence of cycles

can be seen as a result of this information loss: coin-
ciding cyclical majorities occur because of the dis-
tortion of all voter priorities to the same weight by
Condorcet’s style of pairwise voter influence maxi-
mization. On occasion, the distortion caused by the
non-linearity of Condorcet’s binary pairwise com-
parison can overwhelm a weaker consensus and this
incoherence of pairwise victories may manifest as
a cycle. As we will show in Section 10, relative
voter priority information loss and the resulting po-
tential for cycles become even more problematic as
the number of candidates increases.
Condorcet discovered cycles in the late 18th cen-

tury, but it would be another 150 years before a
now famous theorem would more clearly explain
the obstacles to designing an optimal social choice
method.

6 Arrow’s Impossibility Theorem

In his 1951 book Social Choice and Individual Val-
ues [1], economist Dr. Kenneth Arrow proposed a
list of properties that an ideal social choice method
or voting system would possess:

1. unrestricted domain (or universality);

2. positive association of values (monotonicity);

3. independence of irrelevant alternatives (binary
independence);

4. non-imposition (or citizen sovereignty);
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5. non-dictatorship.∗†

Arrow’s famous impossibility theorem concludes
that a democratic voting system with three or more
options cannot achieve all of these desirable prop-
erties for all possible collections of ballots. In his
1972 Nobel Prize lecture, Arrow concluded: “Cer-
tainly, there is no simple way out. I hope that others
will take this paradox as a challenge rather than as
a discouraging barrier” [2].
While Arrow’s theorem may seem discouraging

at first, Condorcet’s pairwise analysis provides some
hope. When there is a Condorcet winner, pairwise
analysis achieves all of the desirable properties Ar-
row listed. For many collections of ballots a win-
ner can thus be found without relaxing any of these
properties. The challenge then becomes two-fold:
reducing the occurrence of cycles while maintaining
Arrow’s properties and resolving cycles when they
occur with minimal relaxation. There have been
several proposals for how to resolve cycles since
Condorcet discovered them, including ones by Con-
dorcet [19], Tideman [17], Schulze [15], and Green-
Armytage [7]. We will instead directly address re-
ducing the prevalence of cyclical majorities by pur-
suing a deeper understanding of information loss in
pairwise analysis which causes cycles.

∗ There exist many variations of this famous impossibility
theorem, including a 1963 version which replaces the monotonic-
ity and non-imposition criteria with the Pareto efficiency. Mono-
tonicity, however, is in its own right a frequently discussed prop-
erty of social choice functions so we have chosen to use the orig-
inal version of the theorem.

† Expanded description of Arrow’s five properties:

a) Unrestricted domain means that (1) each voter must have
the freedom to rank all of the choices available in any or-
der, (2) the voting mechanism must be able to process all
possible sets of voter preferences, and (3) it must consis-
tently give the same result for the same profile of votes —
no randomness is allowed.

b) Monotonicity, also termed “positive association of social
and individual values”, means that a change in a candi-
date’s placement on a ballot (either higher or lower), if it
causes a change in the candidate’s ranking, can only result
in a change in final ranking in the same direction.

c) Indepedence of/from irrelevant alternatives means that if
A is preferred to B out of the choice set {A,B} by the
electorate as a whole, then introducing a third alternative
X, thus expanding the choice set to {A,B,X}, must not
make B preferred to A. This property is also referred to in
the literature as binary independence.

d) Non-imposition means citizens must be free to vote for the
candidate(s) of their choice.

e) Non-dictatorship means no single voter determines the en-
tire contest outcome.

7 An idealized, real-valued linear
system perspective

Since the potential for cycles results from the distor-
tion of differential preference magnitudes, an ideal-
ized choice function that will avoid this pitfall seems
straightforward. We can instead simply sum every
voter’s real-valued preference for each candidate,

!τbenefit−cost =
all voters

∑

v

!bv (1.4)

With this approach, all relative preference in-
formation is aggregated into the tally vector
!τbenefit−cost and the winner is then the candidate
with the highest component. Since it is a completely
linear system, (1.4) does not distort preferences at
all.
In this idealized framework, each voter’s prefer-

ence ballot can be interpreted as a vector of expected
cardinal utilities or von Neumann-Morgenstern util-
ities [20]. The preference value assigned to each
possible outcome would be the voter’s expected ben-
efit from that outcome minus any associated cost.
Under such a system it would be considered the so-
cial responsibility of every voter to understand how
to map his personal utility into the group’s summa-
tion. The optimal solution for the group as a whole
is then the alternative with the highest tally in the
benefit-cost sum. This choice function is also known
as the Bentham-Edgeworth sum of individual utili-
ties. It can also be thought of as a Range Voting
variant where each voter can pick his own range.
If all voters submit appropriately scaled ballots,

then (1.4) represents a social choice function that
effectively achieves all of Arrow’s five stated prop-
erties. Unconstrained ballots mapped linearly by a
sum into a global tally vector represent a truly unre-
stricted domain. Full linearity implies positive asso-
ciation of values, as all changes to a voter’s prefer-
ence ballot are positively conducted directly into the
tally. Irrelevant alternatives never affect the rank-
ing of other candidates because ballots are uncon-
strained and each candidate can be given any value
completely independent from the others. With this
function, voters are also free to vote as they wish
for each candidate and no voter determines the en-
tire election results (unless all other voters agree that
they should).
However, even though each voter should con-

strain the envelope of his preference schedule to
only exert his appropriate level of influence, it is
in the voter’s interest to maximize the influence of
his preference schedule. This reality causes this
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function to be unusable. Contentious decisions and
differing concepts of individual social responsibil-
ity could easily cause an endless escalation of ballot
vector magnitudes as competing factions wrestle for
control of a decision outcome.

8 Real-world constraints

Rescaling ballots to standardize the minimum
and maximum preference values that a voter can
express appears to be an easy solution to the is-
sue of voter self-interest which renders (1.4) ef-
fectively unusable. Subtracting the minimum pref-
erence value and then dividing by the ballot span
∆v = max(!bv) − min(!bv) normalizes each voter’s
ballot to a standard interval between 0 and 1,

τrvborda=
all voters

∑

v

!bv−min(!bv)

∆v

(1.5)

Similar to (1.4), (1.5) retains all information re-
garding the relative priorities of a voter but also lim-
its the maximum magnitude of support a voter can
express for a candidate. We will refer to this ap-
proach as a real-valued Borda method but note that
it is also equivalent to Range Voting when all voters
mention every candidate and rescale their ballot.∗

8.1 Example: Real-valued Borda
To show how real-valued Borda differs from pair-
wise tallying, we will tally the same set of ballots
as in Example in 5.1. With Condorcet-style tallying
these ballots produce a cyclic result because of the
loss of relative preference magnitude information.

Voter 1 Voter 2 Voter 3
1.0 A 1.0 B 1.0 C
0.9 B 0.2 C 0.8 A
0.0 C 0.0 A 0.0 B

Since all voters’ ballot spans are 1.0 and all bal-
lots start at 0.0, computing the real-valued Borda
tally vector for this example is a simple sum of the
candidate components. Note, however, that the re-
sults would be equivalent if any ballot was scaled
to span [0, 100], shifted to span [13], [14], or some
combination of the two.

!τrvborda

1.9 B
1.8 A
1.2 C

∗ More information about Range Voting, visit the Center
for Range Voting at http://www.rangevoting.org/

For these ballots B gets the highest total and is
thus the winner.

8.2 Properties of Real-valued Borda

A real-valued Borda tally is distinguished from the
classic ordinal Borda tally, where preference met-
rics are constrained to an evenly spaced, strictly or-
dered ranking. By forcing preferences onto a con-
strained ordinal number line, classic ordinal Borda
has no means to express either that one candidate
stands apart from the others or that two candidates
are equally preferable. For example, with ordinal
tallying the ballots in Example in 8.1 would produce
a tie since all middle candidates would be effec-
tively forced to 0.5. We use unconstrained cardinal-
weighted ballots because we believe ballots should
be instruments for representing all of a voter’s rel-
ative preference information for any viable alterna-
tives (an extension of Arrow’s unrestricted domain).
In addition, when candidates are added to or re-

moved from the middle of an ordinally constrained
ballot, the voter's expressed preference value will
change for all other candidates except the top and
bottom choices. In contrast, inserting or removing
a candidate from the middle of a real-valued bal-
lot causes no change in the preference expression
for the other candidates. The use of ordinally con-
strained ballots causes unnecessary and detrimental
dependence on all the other alternatives under con-
sideration to be introduced into a Borda-style tally.
The use of real-valued preference ratings will also
prove crucial in the development of our moderated
differential pairwise tallying method.
The introduction of the normalization by ballot

span for the real-valued Borda method in (5) has ad-
dressed the primary issue with (4). However, this
introduction of a limit on the strength of a voter’s
authority renders Arrow’s five properties mutually
unachievable. Although (5) achieves Arrow’s four
other properties, it sacrifices independence from ir-
relevant alternatives. This loss of independence
from irrelevant alternatives opens the door for strate-
gic voting: as Borda himself observed, choice func-
tions like (5) which are sensitive to less relevant al-
ternatives work “only for honest men” [3, p. 215].
Ballot span normalization limits the ability of an

individual voter to set her own weight of influence
but, as we will now illustrate, encourages the adop-
tion of a voting strategy. When there are larger num-
bers of candidates under consideration, a voter’s bal-
lot may be significantly stretched by irrelevant al-
ternatives. This ballot stretching decreases a voter’s
authority over the true contenders, increasing the po-
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Figure 1.1: In this hypothetical example, a voter’s
true preferences are shown at left, while a strategi-
cally dilated version is shown at right. If the voter
believes D, C and F have no chance in the election,
it is in her best interest to strategically dilate and
clip her ballot so that the contending candidates A,
B and E define the span. While this distorts pref-
erence information for the candidates the voter be-
lieves are non-contenders, it maximizes the weight
of influence between those considered to be of real
importance.

tential gains from ballot manipulation. If a voter can
predict the top contending candidates, she can in-
crease her influence in the end decision by dilating
and clipping her ballot to span just these top con-
tenders; an example of this strategy is shown in Fig.
1.1. In the face of large-scale speculative gaming of
this kind, the decision outcome becomes predomi-
nantly dependent on perceptions of popular opinion
instead of true voter preference. We term this ad-
verse situation of outcome dependence on perceived
top contenders a form of speculative indeterminacy.
It is worth noting that while ordinal preference

ballots preclude dilating and clipping, they en-
courage other strategic possibilities which are even
worse. Instead of dilating their ballots, voters are
encouraged to stuff the middle of their ballot with
irrelevant candidates to increase their authority be-

tween the top contenders. This strategic reordering
of candidates on the ballot further obscures the true
wishes of the voters, yielding close to meaningless
results. When there are large numbers of candidates,
the potential gain from strategic voting with ordinal
Borda increases as there are more irrelevant alterna-
tives that can be stuffed in the middle of an ordinal
ballot.
The only reasonable goal of any voting strategy

is to elect the highest possible candidate from the
voter’s sincere preference schedule. As we have just
described, with Borda’s method voters can manip-
ulate the placement of perceived non-contenders to
increase the influence of their ballot over the fron-
trunners. All vote tallying systems which do not
exhibit strict candidate pair dependence will effec-
tively encourage some kind of similar speculative
voting strategy. When voters no longer express their
true preferences to a social choice function, the elec-
tion result cannot reflect the true desires of the elec-
torate.
One way of interpreting Condorcet’s tallying

method is that it automatically maximizes each
voter’s influence since the voter’s full influence is
expressed between each candidate pair. Therefore, a
strategic voter cannot do anything to change a pair-
wise sub-contest where her sincerely preferred can-
didate falls on the losing side. The property of strict
candidate pair dependence limits a voter to trying
much riskier indirect strategies. A voter can only
attempt to flip a pairwise contest to a candidate she
finds less preferable in the hope of creating a cycle
which might end up resolving in her favor.
Unfortunately, as shown in Example in 5.1, when

there are more than two candidates Condorcet’s
influence maximization also invites cyclical out-
comes. In contrast, Borda-style methods with bal-
lot span normalization always yield a distinct out-
come but encourage several forms of strategic vot-
ing. In the following sections, we will transform
these two classic tallying methods into a common
delta-preference framework. This new framework
will clarify their similarities and differences, and
suggest a hybrid method which can exhibit the de-
sirable properties of both methods.

9 Pairwise difference matrix of a
vector

In preparation for the use of concise matrix notation
throughout the rest this paper, we introduce an oper-
ator that computes the pairwise difference matrix of
a vector. This operator will be used to express both
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Condorcet’s and Borda’s methods into a unified ma-
trix formulation. First, we build a square matrix M
from a vector !v by replicating the vector in each ma-
trix column,

M = [!v . . .!v] (1.6)

The difference matrix of !v is then defined as the
column-replicated matrixM minus its transpose,

DiffM(!v) = M − MT (1.7)

The subtraction of the transpose yields an anti-
symmetric matrix which contains the pairwise dif-
ference between every combination of components
in the incoming vector. The element [A,B] of the
resulting matrix is equal to the difference in value
between components [A] and [B] of the vector:
DiffM (!v) [A, B] = !v [A] − !v [B] = −DiffM (!v) [B, A]

All the diagonal elements of DiffM(!v) are 0.
Note that this subtraction of the transpose is the
same operation used in (1.2) to find the Condorcet
delta-tally. We also note that the DiffM operator is
linear, a property we will use to reorder operations
in the development of the re-factored formulations
that follow. When this operator is applied to a
voter’s preference ballot vector, we will refer to
the resulting matrix as the voter’s delta-preference
matrix DiffM(!bv).

9.1 Example: A Delta-Preference Matrix

For this example we will consider the same ballot as
in Example in 4.1.

Voter 1
1.0 A
0.9 C
0.0 B

As described, the [A,B] element of DiffM(!bv) is
given by!bv[A] −!bv[B].

Voter 1
A B C

A 0 1.0 0.1
B -1.0 0 -0.9
C -0.1 0.9 0

10 Condorcet pairwise tallying in
difference matrix form

In preparation for forming a hybrid method that
unifies the underlying approaches of Borda and

Condorcet, we will reformulate Condorcet pair-
wise tallying employing the above difference ma-
trix operator. The voter’s delta-preference matrix
DiffM(bv) is used to compute the pairwise tally ma-
trix across all pairs of candidates in a single element-
by-element matrix operation,

TCond=
all voters

∑

v

(

DiffM
(

!bv

)

> 0
)

(1.8)

This equation is the equivalent matrix form of the
classic pairwise comparison in (1.1).
In (1.2) we computed the Condorcet delta-tally

DCond from pairwise tally TCond. We will now
derive an equation for determining the Condorcet
delta-tally directly from ballots by combining (1.2)
and (1.8). We can reorder the differencing of
TCond and its transpose from (1.2) to be inside
the ballot tallying summation by again employing
the delta-preference matrix DiffM(!bv), which then
gives DCond as:

all voters
∑

v

(

(

DiffM(!bv) > 0
)

−
(

DiffM(!bv) > 0
)T

)

(1.9)
This delta-tally formulation is equivalent to per-

forming both (1.1) and (1.2) but is tabulated directly
from the voters’ ballots without the need of the in-
termediate pairwise tally.
To condense (1.9) we will use the signum func-

tion which is defined as

sgn(x) =







1 if x > 0
0 if x = 0

−1 if x < 0
(1.10)

Signum can also be written as the difference
of two inequalities sgn(x) = (x > 0) − (x < 0) or
equivalently sgn(x) = (x > 0) − (−x > 0). Since
the delta-preference matrix DiffM(bv) is always
anti-symmetric, its transpose is equal to its
negation: (DiffM(bv) > 0)T = (−DiffM(bv) > 0)
= (DiffM(bv) < 0). Using this, (1.9) simplifies to

DCond =
all voters

∑

v

sgn
(

DiffM(!bv)
)

(1.11)

This equation is the direct difference matrix ex-
pression of the Condorcet delta-tally in (1.2).
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10.1 Example: Direct Delta-tally of
Condorcet Winner

For this example we will use the set of ballots from
Example in 4.2 which produced a Condorcet winner.

Voter 1 Voter 2 Voter 3
1.0 A 1.0 B 1.0 C
0.9 C 0.2 C 0.8 A
0.0 B 0.0 A 0.0 B

Using (1.11), we can directly compute what each
voter will add to the delta-tally.

Voter 1
A B C

A 0 1 1
B -1 0 -1
C -1 1 0

Voter 2
A B C

A 0 -1 -1
B 1 0 1
C 1 -1 0

Voter 3
A B C

A 0 1 -1
B -1 0 -1
C 1 1 0

As in Example in 4.1, the voter’s original spac-
ing between candidates cannot be recovered from
his contribution to the Condorcet delta-tally. As ex-
pected, summing all voter contributions produces
the same aggregate delta-tally as we found in Ex-
ample in 4.1.

DCond

A B C
A 0 1 -1
B -1 0 -1
C 1 1 0

As before, C wins both of its pairwise compar-
isons and is therefore the winner.
It is also worth noting that since (1.11) is equiva-

lent to (1.2), (1.11) will yield an ambiguous cyclical
outcome for the same ballot collections as (1.2).

11 Real-valued Borda Tallying in
Difference Matrix Form

We will now transform the vector Borda tallying
method from Section 8 into an equivalent difference

matrix form. This new form will have a similar
structure to the Condorcet delta-tally presented in
(1.11). To start, we can compute the delta-Borda
tally matrix for a Borda tally vector produced by
(1.5),

Drvborda = DiffM(!τrvborda) (1.12)

The Drvborda matrix contains the same infor-
mation on the relative standing of candidates as
the τrvborda vector, but it possesses a similar anti-
symmetric structure to the Condorcet delta-tally in
(1.2) and (1.11). We can commute the difference
matrix operator in (1.12) to inside the summation
across voters, creating an equivalent delta-Borda
matrix formulation that implements the preference
differencing operation on a per ballot basis similar
to (1.11),

Drvborda =
all voters

∑

v

DiffM(!bv)

∆v

(1.13)

As in (1.5), ∆v is the span of the voter’s bal-
lot, i.e. ∆v = max(!bv) − min(!bv). DiffM(!bv)
is the delta-preference matrix from the voter’s
ballot as described in Section 5. Normalizing
DiffM(!bv) by ballot span limits the voter’s contribu-
tion to a given delta-tally component to ±1 , since
max

(

DiffM(!bv)
)

= ∆v .
In the absence of exact ties, the tally vector from

(1.5) always yields a distinctly ordered candidate
ranking. The delta-Borda matrix derived from this
tally vector contains the same ranking information
and, therefore, the win matrix produced by this
delta-Borda tally will also yield the same unique,
cycle-free candidate ranking. In other words, since
Borda tallying is a linear process that does not dis-
tort relative preference magnitude information, it
will never yield an ambiguous cyclical result. This
statement is true for the vector-based tabulation
from (1.5) as well as the equivalent difference ma-
trix form in (1.13).

11.1 Example: Real-valued Borda
Delta-tally

To demonstrate that (1.13) is equivalent to (1.5), we
will perform a real-valued Borda delta-tally using
the ballots from Example in 8.1.

Voter 1 Voter 2 Voter 3
1.0 A 1.0 B 1.0 C
0.9 B 0.2 C 0.8 A
0.0 C 0.0 A 0.0 B
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Each voter’s contribution to the delta-tally is the
voter’s delta-preference matrix divided by the span
of his ballot. All ballot spans are 1.0 for this exam-
ple.

Voter 1
A B C

A 0 0.1 1.0
B -0.1 0 0.9
C -1.0 -0.9 0

Voter 2
A B C

A 0 -1.0 -0.2
B 1.0 0 0.8
C 0.2 -0.8 0

Voter 3
A B C

A 0 0.8 -0.2
B -0.8 0 -1.0
C 0.2 -1.0 0

For the Condorcet case in Example in 10.1, only
a voter’s ordering of the candidates could be deter-
mined from his contribution matrix. For the real-
valued Borda contribution matrices above, the rel-
ative magnitudes of delta-preference are conserved.
The aggregate delta-tally is the sum of all voter con-
tributions. As in the Condorcet case, we determine
the winner by computing a win-Boolean matrix.

Drvborda

A B C
A 0 -0.1 0.6
B 0.1 0 0.7
C -0.6 -0.7 0

Wrvborda

A B C
A 0 0 1
B 1 0 1
C 0 0 0

As in Example in 8.1, candidate B is the winner.
This difference-matrix form for real-valued Borda
also demonstrates that determining a winner from a
Borda tally is very similar to finding a Condorcet
winner. In both circumstances, the winning candi-
date will have her row in the win-Boolean matrix all
1 (except to diagonal). The key difference is that
the linearity in Borda tallying guarantees that it will
never yield a cycle.
In the next section, we will combine the trans-

formed Condorcet and Borda tallying formulations
in (1.11) and (1.13) to reduce the prevalence of
cyclical outcomes.

12 Moderated Differential Pairwise
Tallying: A Hybrid

We will now bring together the desirable properties
of Condorcet and real-valued Borda tallying, bal-
ancing Condorcet’s strict candidate pair dependence
with real-valued Borda’s undistorted transmission of
relative priority information. A significant form of
information loss in Condorcet’s pairwise compari-
son is the removal of degree for each voter’s smaller
differential preferences. Cycles are more prevalent
due to information loss when no distinction is made
between candidates far apart versus close together
on a voter’s ballot. Making use of the similar struc-
ture of (1.11) and (1.13), we can address this short-
coming in Condorcet’s method by forming a param-
eterized hybrid of Condorcet and Borda tallying us-
ing a linear sigmoid. A linear sigmoid introduces a
proportional, sloped linear region around near equal
preference to the classic signum from (1.11). This
sloped region will address issues caused by the hy-
persensitive step transition in a signum function. We
define this linear sigmoid function as

linsgn(x, h) =

{ x

h
if | x |< h

sgn(x) if | x |≥ h
(1.14)

The parameter h is the half-width of the linear re-
gion of the sigmoid, with the equation’s conditional
written in terms of the magnitude (absolute value)
of x. As h → 0, the linear region vanishes towards
the signum’s step discontinuity.
Using this linear sigmoid we can insert a param-

eterized Borda-like proportional region into the sat-
urated, binary comparison of Condorcet’s method.
To control the width of this linear region we intro-
duce the moderation span, mv. This voter speci-
fied parameter allows each voter to choose where on
the tallying continuum between the Condorcet and
Borda methods her ballot will be tallied. Moderated
differential pairwise tallying (MDPT) can be written
in matrix form as

DMod =
all voters

∑

v

linsgn
(

DiffM(!bv),mv

)

(1.15)

We can also compute the same moderated delta-
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tally element-by-element and with less abstraction,

DMod[A, B] =

all voters
∑

v

!bv[A] −!bv[B]
mv

if | !bv[A] −!bv[B] |< mv

sgn
(

!bv[A] −!bv[B]
)

if | !bv[A] −!bv[B] |≥ mv

(1.16)

As they are equivalent, both (1.15) and (1.16) di-
vide the difference in candidate preference values
by the voter’s moderation span, mv , reverting to
the previous Condorcet formulation when the differ-
ence between the candidates is greater thanmv . Re-
gardless of any voter’s moderation span or candidate
placement, each matrix element in Dmod depends
only on the pair of candidates in question. Because
of this property, MDPT possesses the same property
of strict candidate pair dependence as Condorcet’s
classic pairwise tallying.

12.1 Example: Moderated Differential
Pairwise Tallying

For our example of MDPT we will use the collection
of ballots from Examples 5.1 and 8.1. With pairwise
tallying these ballots produced an ambiguous cycle,
while a winner was found using real-valued Borda.
For this example we will set each voter’s moderation
span to half of their ballot span, 0.5.

Voter 1 Voter 2 Voter 3
1.0 A 1.0 B 1.0 C
0.9 B 0.2 C 0.8 A
0.0 C 0.0 A 0.0 B

We next compute the moderated delta-preference
matrix for each voter. All preference differentials
smaller than 0.5 are moderated.

Voter 1
A B C

A 0 0.2 1.0
B -0.2 0 1.0
C -1.0 -1.0 0

Voter 2
A B C

A 0 -1.0 -0.4
B 1.0 0 1.0
C 0.4 -1.0 0

Voter 3
A B C

A 0 -1.0 -0.4
B 1.0 0 -1.0
C 0.4 1.0 0

The sum of these voter contributions produces the
moderated delta-tally from which we can also deter-
mine a win-Boolean matrix.

Dmod

A B C
A 0 0.2 0.2
B -0.2 0 1.0
C -0.2 -1.0 0

Wmod

A B C
A 0 1 1
B 0 0 1
C 0 0 0

The winner for this moderated example is candi-
date A. This hybrid method produced a different re-
sult than the Borda and Condorcet methods. With
full ballot span normalization, the winner for these
ballots is B as shown in Example in 11.1. With Con-
dorcet’s pairwise tallying in Example in 5.1, these
ballots produced a cycle. To resolve the cycle, the
two voters on the winning side of one pairwise con-
test in the Condorcet tally need to moderate suffi-
ciently to change the pairwise result. In this ex-
ample, Voter 2 and Voter 3 both indicated that they
found A and C relatively similar, allowing A to win.
If the voters’ moderation spans were expanded to
1.0, then the result of the sub-contest between A and
B would also flip and B would be the winner. This
result would be the same as the Borda case since
moderated tallying with all mv = 1.0 is equivalent
to real-valued Borda.
We will discuss some details of how this new vote

tallying mechanism works and why a voter might
choose to moderate in the following sections.

13 Moderation as a transfer function

Moderation in MDPT can be understood as follows.
If option A is much more preferable than B, the
signum function limits the support of A with respect
to B to +1. Conversely, if B is much more prefer-
able than A, then the differential opposition of A
to B is similarly limited to −1. If the difference in
preference between A and B is less than the voter’s
moderation span, then the expression of relative sup-
port or opposition between the candidates will be
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Figure 1.2: Voter support of one candidate over an-
other based on the preference delta of those candi-
dates on the voter’s ballot. The left graph shows this
transfer function for Condorcet pairwise compari-
son, the right for moderated pairwise comparison.

less than the voter’s full weight. The moderation
span introduces a linear region into a voter’s contri-
bution to the delta-tally matrix. With this addition
to pairwise tallying, the voter can choose to mod-
erate his expression of relative support/opposition
for alternatives he finds nearly equally preferable.
Fig. 1.2 shows a voter’s differential support ver-
sus delta-preference for pairwise tallying using both
Condorcet’s classic quantization and MDPT.
Whenmv is shorter than the smallest distance be-

tween candidates on a voter’s ballot, the voter’s tally
contribution is equivalent to Condorcet’s compari-
son in (1.1). If a voter’s moderation span is equal
to the whole span of his ballot, the voter’s delta-
preferences will all fall within the moderated lin-
ear region as the magnitudes in the delta-preference
matrix are bounded by ballot span. In this circum-
stance, the voter’s tally contribution is equivalent to

Figure 1.3: Assessing candidates A and B with re-
spect to C, where the voter’s ballot is shown be-
low the sigmoid. The voter’s contribution into the
tally matrix for each sub-contest is represented by
the height of the BC and AC arrows. Note that B re-
ceives moderated support while the voter exerts full
support for A.

that from the linear delta-Borda tally in (1.5). When
a voter’s span of moderation is set between these
two extremes, this partial linearity allows for a hy-
brid of strong and moderate opinion. The effect of
the moderation span on tally contributions is demon-
strated in Figs. 1.3 and 1.4.

We note that the transfer function of the lin-
ear sigmoid bears some resemblance to the dilat-
ing and clipping voter strategy shown in Fig. 1.1.
With this strategy a voter effectively created a lin-
ear region over the perceived frontrunners and com-
pressed the ends of his ballot. In (1.15), however, the
linsgn(x, h) function is applied to a voter’s delta-
preference matrix DiffM(!bv) instead of directly to
the expressed preference ballot vector!bv . This pro-
cedure mitigates the need for one of the two degrees
of freedom in such a speculative strategic interval
voting strategy: the position of a strategic interval.
In the same way that Condorcet’s pairwise tallying
assesses the relative ranking of all possible candi-
date combinations independently, MDPT evaluates
all transpositions of the voter’s desired moderation
span centered around each candidate on the ballot.
Essentially, mv defines the extent of a moderation
interval around each candidate. The width of the
voter’s moderation span is the remaining degree of
freedom in voting, allowing the voter to choose the
level of influence for his smaller differential prefer-
ences.
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Figure 1.4: To assess candidates with respect to B,
the linear sigmoid is transposed to center around
candidate B. In sub-contest CB, the voter’s oppo-
sition to C is moderated to the same degree as in
BC from Fig. 1.4 since the delta-tally matrix is
anti-symmetric (BC = -CB). In sub-contest AB, A
is considered significantly more preferable to B and
receives full support.

14 The cycle reducing effect of
moderation

To demonstrate the cycle reducing effect of mod-
eration, we simulated elections using uniform ran-
dom ballots. Many other voting models for simulat-
ing perhaps more realistic elections exist, including
issue-space methods [4]. We have chosen instead to
use uniform randomness because it readily produces
cycles and allows us to show the effect of modera-
tion in the most general way.
For each data point in Fig. 1.5 and 1.6, we com-

puted 7,250 elections. Each simulated election used
seven random ballots possessing a uniform candi-
date distribution. After randomly selecting a pref-
erence value for each candidate, we rescaled every
ballot to span 0 to 10 so that a particular moderation
span had the same meaning for each ballot. Fig. 1.5
shows how the moderated span extension to clas-
sic Condorcet pairwise tallying can reduce the oc-
currence of cyclical results. When voters choose to
moderate the expression of their differential prefer-
ence over candidates they find similarly preferable,
cycles are less likely to occur.
For the case when no voters choose to moder-

ate (all mv = 0), Fig. 1.5 shows a sharp growth
in the percentage of elections resulting in cycles as
the number of candidates increases. One conclusion

Figure 1.5: This graph shows how the percentage of
random elections producing a cyclical result grows
with the number of candidates considered for differ-
ent moderation levels. Each of our data points rep-
resents 7,500 elections using seven random ballots.
For each election, seven random ballots with uni-
form candidate distribution were created and then
rescaled to span [0,10]. When all moderation spans
are 0 (blue diamonds), the results are found to be
equivalent to data gathered by Jones et al [9] for
classic Condorcet pairwise analysis (light blue cir-
cles). When the moderation span for these random
ballots is set 40% of ballot span, the data shows a
dramatic decrease in the probability of cycles.

from this result is that, in classic pairwise analy-
sis, elections with a large number of candidates are
much more likely to produce cycles. This result
agrees with the data for classic pairwise tallying of
random ordinal ballots in Jones et al [9], which is
also shown in Fig. 5. For electorates which choose
to moderate, however, cycles are significantly less
likely to occur even with more than 30 candidates.
Fig. 1.6 presents another view of this same cy-

cle probability simulation. This view shows that as
moderation increases the probability of a cycle goes
to 0 even for large candidate fields.

15 Discussion

The addition of the moderation span addresses an
important shortcoming of Condorcet’s pairwise tal-
lying. Although classic pairwise tallying is hard-
ened against manipulation, it does not allow voters
to express any difference between their various pri-
orities. All delta-preference magnitudes are treated
as the same. We would like to suggest three ways of
interpreting this new concept of moderation.
First, voters may simply wish to express slight
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Figure 1.6: This graph shows how the probability of
a cyclical outcome decreases with increasing mod-
eration span for several different numbers of candi-
dates. The results were produced using the same
uniform random ballot method as Fig. 1.5 with
seven ballots. As the moderation spans grow, the
prevalence of cycles drops off towards 0. When
all moderation spans cover the voters full ballot
(mv = 10in this case), the computation is equiva-
lent to a real-valued Borda tally and will never result
in a cycle.

preferences. Some Condorcet methods allow vot-
ers to express that they consider a pair of candi-
dates equally preferable. Moderation extends this
idea to create a smooth continuum between consid-
ering two candidates equally preferable and express-
ing full support for one over the other. For example,
a voter might strongly prefer A over C, but have only
a small preference for A over B. The moderation
span permits the voter to express these differences
in priority. Such slight preferences could represent
some form of uncertainty a voter has for whether A
or B is actually better.
A second perspective on the moderation span

is that it gives voters the freedom to choose not
to strategically maximize their voting influence
over candidate pairs they find similarly preferable.
At mv = 0, MDPT tallies a voter’s ballot using
Condorcet’s pairwise analysis, meaning all delta-
preference magnitudes are maximized. When mv

is equal to ballot span, only the single largest delta-
preference on the voter’s ballot is maximized. Mod-
eration gives voters control over the level of strategic
maximization for their ballot. In fact, a voter could
choose to expandmv beyond the size of their ballot,
which brings us to our final comment.
The third interpretation of moderation we suggest

is that it allows a form of voluntary interpersonal
comparison of utilities. In Section 7 we described

an idealized, cardinal utility method for making so-
cial choices. The issue which makes this method
unusable is well known in economic theory: while
individuals can determine the relative costs and ben-
efits of different potential outcomes for themselves,
there is no general, well-defined way of comparing
the utilities of individuals. However, as discussed
by Sen [17], the common background and experi-
ences of members of a society do allow at least a
limited form of interpersonal comparison of utilities.
While pairwise analysis operates on the premise that
all voters will try to maximize their own influence
over a decision, the voter-specified moderation span
leaves open the possibility that whole communities
will be able to see their individual preferences in
a broader perspective. When many voters choose
to vote moderately, the group can make decisions
with more of a Borda-like, shared benefit-cost per-
spective. Some voters may recognize they do not
have as much at stake in a particular decision as
others and perhaps then set their moderation spans
greater than the span of their ballot. Although the re-
ality of contentious and consequential elections re-
quires that any well-formed vote tallying method be
hardened against manipulation, voluntary modera-
tion enables more moderate groups of people to also
use pairwise analysis.
The concept of moderation also seems applicable

even in the case where there are only two candidates
on the ballot. In Sections 2 and 4 we discussed how
picking between just two candidates avoided com-
plications from the spoiler effect and was therefore
fairly straightforward. However, as we have just de-
scribed, there are circumstances where a voter may
wish to express a slight preference for one candi-
date over another. The moderation enhancement to
classic pairwise tallying in MDPT gives voters this
flexibility, even in the two-candidate scenario.
When voters are provided the freedom to express

moderate opinion, we assert that a candidate who
emerges on top of all head-to-head comparisons
with every other candidate under consideration is
distinctly the best choice. We term such a candidate
a moderate Condorcet winner. If no voters choose
to moderate, then the moderate Condorcet winner
is equivalent to the classic Condorcet winner. When
voters do choose to moderate, then the moderate and
classic Condorcet winners will sometimes differ. In
particular, as we showed in Section 14, a moderate
Condorcet winner occurs more often than a classic
Condorcet winner.
We refer to a voting method as moderate Con-

dorcet winner definite if it always selects the mod-
erate Condorcet winner when one exists. MDPT
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is intrinsically moderate Condorcet winner definite.
Since the moderation span gives voters control over
the strategic expression of their ballot, we claim that
this proposed criterion is an improvement over the
classic Condorcet winner criterion and thus should
be a requisite property of any well-formed social
choice function.
That said, MDPT does not on its own constitute

a complete social choice function. Cyclical majori-
ties can still occur, particularly if voters choose not
to moderate in contentious decisions. It would cer-
tainly be possible to use a cycle breaking scheme
like those proposed by Llull [8], Condorcet [21],
Tideman [18], or Schulze [15] on top of MDPT.
Since our approach uses real-valued preference bal-
lots, the cardinal-weighted approach proposed by
Green-Armytage [7] could also easily be employed.
However, as we alluded to in Section 6, we be-
lieve that the emphasis in designing a cycle reso-
lution scheme should be on minimally relaxing in-
dependence from irrelevant alternatives. Most ex-
isting cycle resolution methods are defined in terms
of properties of the aggregate tally. We suggest
instead that an approach could be built using the
concept of moderation. Such a method would re-
solve cycles by removing edges from the win-edge
graph based on which candidate pairs individual vot-
ers find most similarly preferable. A voter priority
driven method of this type could more directly min-
imize the amount of compromise individual voters
would need to make for the group to reach a coher-
ent decision.

16 Practical Aspects

In the thick of the mathematical detail of our
method, it can be difficult to keep track of the bigger
picture question: how would it work in actual elec-
tions? In this section, we take a step back to address
this more practical question. To begin, we will de-
scribe how a moderated preference ballot would be
cast. We will then describe how elections could be
set up to work with our system. Finally, we will dis-
cuss some properties of MDPT which should make
a transition to this new system easier.

16.1 Casting a moderated ballot

We will now describe how a voter might cast a real-
valued preference ballot with a moderation span.
This new form of voting will require a new user in-
terface, but with a good design we believe it will
be quite intuitive. Our vision for this new interface

involves the use of sliders to move candidates up
or down on the ballot. These sliders could either
be mechanical sliders like those in the figure below,
or graphical sliders on a computer screen controlled
with a mouse or a touchscreen. Forming a ballot
would then be a simple matter of pushing the sliders
up or down until the voter is happy with the posi-
tions of the various candidates.

As an example of how a voter could shape her
real-valued preference ballot, consider the following
scenario:

16.2 Example: Casting a moderated ballot

After careful consideration, a voter has determined
her preferences for six candidates in an election. She
might start creating her ballot by simply placing the
six candidates in order, with her most preferred at
the top of her ballot and an equal spacing between
the rest, as shown in Fig. 1.7 (a). Suppose she has a
strong preference for D, C, or A over any of the other
candidates, but does not have strong preferences be-
tween those three. She would then separate D, C,
and A from the rest and shrink the space between
them, as shown in Fig. 1.7(b). Next, if she partic-
ularly dislikes candidate F, then she would move F
further down (Fig. 1.7(c)).
After placing the six candidates, the voter has two

further decisions to make: (1) how to set her mod-
eration span to indicate which candidate pairs she
finds similarly preferable, and (2) where to place a
default value which would be given to any unrated
candidates.
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Figure 1.7: Shows the incremental construction of
the ballot for Example in 16.2.

Based on her final ballot rankings, Fig. 1.7(c),
the voter would set her moderation span to a dis-
tance approximately equal to the space between can-
didates A and B. This span would indicate her strong
preference for the higher of two candidates on her
ballot separated by that distance, like A compared
to B, or E compared to F. It would also indicate
her smaller preference for candidates placed more
closely on her ballot, like D compared to C or A.
The final step is that the voter should also specify

a default value which will be given to any candidates
she has not rated. This default value will usually
be near the bottom of the ballot, with only candi-
dates that the voter strongly dislikes below the de-
fault. Since this voter finds F particularly unprefer-
able, she would place her default value between E
and F. If there are other candidates in the election, G
and H, for example, the system would register that
this voter prefers them both over F, even though she
has not explicitly ranked them on her ballot. Our
voter’s ballot is now complete. Fig. 1.8 shows the
final ballot at left, as well as how the ballot would
be tallied, at right.

16.3 Setup of an election

One of the main goals of this method is to enable
voting over a wide range of options. As discussed in
Section 2, methods built on pairwise analysis elimi-
nate the need for primaries or other methods of lim-
iting available options. By reducing the potential for
cyclical majorities, MDPT allows voters the widest
possible range of alternatives. However, when many
options are available, voters have to put in greater
effort to determine their preferences. It is therefore
fundamentally important that voters have easy ac-

A B C D E F Def
A - 1.0 -0.2 -0.4 1.0 1.0 1.0
B -1.0 - -1.0 -1.0 0.5 1.0 1.0
C 0.2 1.0 - -0.2 1.0 1.0 1.0
D 0.4 1.0 0.2 - 1.0 1.0 1.0
E -1.0 -0.5 -1.0 -1.0 - 1.0 0.6
F -1.0 -1.0 -1.0 -1.0 -1.0 - -0.4
Def -1.0 -1.0 -1.0 -1.0 -0.6 0.4 -

Figure 1.8: Shows the final ballot and moderation
span for Example in 16.2, including the contribution
matrix for the ballot. The moderation span scales all
shorter preference differences on the voter’s ballot.

cess to clear information about all alternatives. In
circumstances where many voters do not have the
time or expertise to form considered opinions, we
suggest the use of a delegable proxy representation
system, similar to that proposed by Green-Armytage
[6]. Such a system would allow voters to proxy their
voting weight to the representative of their choos-
ing for a given issue, achieving a free-form propor-
tional representation structure and a more respon-
sive democratic process.
In addition, when there are many candidates on

the ballot, there must be a way to handle the can-
didates that a voter does not wish to rate. As men-
tioned in the description of how to cast a moderated
ballot, our suggestion is to allow voters to specify a
default value. This default value would be assigned
to any unrated candidate. Again, we anticipate that
this default value would typically be placed at or
near the bottom of the voter’s ballot.
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16.4 Transition to MDPT

A transition to this new system would require an ad-
justment for voters who are used to picking a single
candidate. Significant voter and poll-worker educa-
tion campaigns would be necessary for all voters to
feel comfortable with this or any new voting system.
However, MDPT has a couple features which should
make the transition easier.
The first attractive feature of the new system is the

removal of the need to vote strategically based on
which candidates are top contenders. MDPT would
allow a voter to support any candidate of his choice
- regardless of that candidate’s popularity - without
feeling that his vote might be “thrown away.” This
innovation means that voting can be a simple expres-
sion of preference. With our method, voters can feel
they have greater choice in an election and that their
vote is, therefore, more meaningful.
Flexibility is the second feature of this voting sys-

tem which should ease any transition. In addition
to the moderated preference ballot described above,
voters may use our system to cast other styles of bal-
lots with which they are more familiar. If a voter
wants to vote only for his favorite candidate, then he
can simply put that candidate at the top of his bal-
lot and leave all others at the bottom. A voter who
prefers to do a basic ranking of candidates could list
them in his preferred order and set the moderation
span to 0. We believe voters will appreciate this
freedom to express their preferences, and that this
appreciation will translate into a better experience
while voting and a greater value being placed on the
democratic process.

17 Conclusion

In this paper we have presented moderated differen-
tial pairwise tallying (MDPT), a per-voter hybrid of
the methods of Condorcet and Borda. The founda-
tion for this method is based on Condorcet’s pair-
wise tallying, which has the important property of
strict candidate pair dependence. As we described,
however, the classic formulation of pairwise tallying
discards all voter priority information. This infor-
mation loss can cause ambiguous, cyclical results
for some collections of ballots. At the other end
of the spectrum, we examined a real-valued Borda
method which always returns a coherent result. The
necessary division by ballot span in Borda meth-
ods introduces dependence on irrelevant alternatives
and encourages speculative voting strategies. To add
some Borda-style linearity to pairwise tallying, we
developed the voter-specified moderation span. As

we have shown, for electorates that choose to widen
their moderation spans, cycles will occur less fre-
quently and group consensus will be easier to find.
The introduction of the voter-specified modera-

tion span, in conjunction with real-valued prefer-
ence ballots, is an important enhancement to Con-
dorcet’s pairwise tallying method. Providing voters
the freedom to express moderate differential pref-
erences partially addresses the critical information
loss issue with classic pairwise tallying. We also
proposed to replace the classic Condorcet winner
definite criterion for voting methods with a new
moderate Condorcet winner definite criterion. Of-
ten, cycle resolution will not even be necessary
when voters choose to moderate over their diverse
opinions. It is only when voters choose not to mod-
erate in contentious decisions that the remaining po-
tential for cycles requires some additional resolu-
tion. In the next section we will discuss how the
tools we have presented in the paper could be ex-
tended to resolve cycles or provide a framework for
more directly comparing social choice functions.

18 Future Research

We believe there are some intriguing directions for
further research based on the material in this pa-
per. Through the use of real-valued preference bal-
lots and pairwise delta-tallying, we have expressed
Condorcet and Borda’s tallying methods in a unified
framework. This perspective highlighted the simi-
larities and differences of these methods. It appears
that other common social choice methods can also
be expressed using real-valued preference ballots
and pairwise delta-tallying. This delta-preference
framework is a potential foundation for a general-
ized approach for comparing social choice methods.
The concept of individual moderation introduced

in this paper provides a new foundation for con-
structing a complete democratic group decision sys-
tem. As discussed in Section 15, the additional
needed component is a cycle resolution method
which minimizes dependence on less-relevant alter-
natives. With such a system, the spoiler effect would
be a thing of the past. Primaries and other methods
of artificially pruning the scope of alternatives under
consideration would also no longer be necessary.
While there remains work to be done, the poten-

tial for significant positive social impact from ad-
vances in social choice theory cannot be overstated.
We are grateful for the encouraging style at the close
of Arrow’s Nobel Prize lecture and we would like-
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wise encourage others in this quest to further under-
standing in this vital and challenging field.
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pluralité des voix, republished by AMS
Bookstore (1972)

[6] Green-Armytage J (unpublished)
“Representation by Delegable Proxy”, For
URL, see McDougall site resources page.

[7] Green-Armytage J (2004) “Cardinal-weighted
pairwise comparison”, Voting matters,
19:6-13
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